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GAIN REDUCTION IN FELS DUE TO DIFFRACTION LOSSES
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The asymptotic expressions for the gain in the free electron lasers (FELs), which operate in the strong-pump Compton regime and
in the collective Raman regime, and which employ a sheet electron beam and a cylindrical electron beam, are presented. For each
case we identify a coupling parameter that measures the strength of the interaction. Large values of the coupling parameter
correspond to strong optical guiding, while small values correspond to large diffraction. When the coupling parameter is small, the
scaling of the gain is different from that of the one-dimensional theory because of diffraction losses. The particular scaling of the gain
when diffraction losses are large depends both on the regime of operation and on the beam geometry. We give asymptotic expressions
for the gain when diffraction is large for each case. This linear analysis is valid when the signal is small and is useful mainly when the

gain is high prior to saturation.

1. Introduction

The modification of the transverse profile of the
wave in the FEL and the associated optical guiding are
subjects of extensive theoretical [1-14] and experimen-
tal [15-17] study. We examine these phenomena by
formulating an eigenvalue problem for the transverse
profile of the wave. The eigenfunctions are wave modes
of a self-similar nature. They preserve their transverse
profiles as they propagate. The imaginary part of the
eigenvalue determines the growth rate of the mode.

The eigenvalue formulation is mostly useful to de-
scribe the interaction when the signal is small and the
gain is, high prior to saturation. It was applied to the
FEL first by Moore [2] and later by others [3-5,10-14].
Moore analyzed a cylindrical electron beam FEL in the
strong-pump regime, and identified a coupling parame-
ter that 'measures the strength of the interaction. We
extended Moore’s analysis to the sheet beam FEL in the
strong-pump regime [12], and to the cylindrical beam
FEL in the collective Raman regime [14]. In this paper
we study the sheet beam FEL in the collective Raman
regime, and compare these four cases: the two different
geometries and two different regimes of operation. We
show that the coupling parameter and the scaling of the
gain are different in each case. Strong optical guiding
occurs when the coupling parameter is large. and dif-
fraction is large when this coupling parameter is small.
When the coupling parameter is large, the gain scales as
it does in the 1-D (one-dimensional) theory. The reduc-
tion of the beam transverse dimensions (while the cur-
rent is kept constant) increases the density, and, as a
result, also the gain. However, if the coupling parameter
is small, this reduction of beam transverse dimensions
has also an opposite effect: it reduces the filling factor,
increases diffraction losses, and, as a result, decreases
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the gain. Which of these opposing effects (the density
increase or the filling factor decrease) is dominant de-
pends on the geometry and on the regime of operation.
In the cylindrical beam FEL in the strong-pump regime,
for example, the gain keeps increasing if one uses a
smaller radius beam, while in the Raman regime at
small radii the gain decreases when the radius is re-
duced.

In section 2 we write expressions for the transverse
wave profile and for the gain in the sheet beam FEL in
the Raman regime. We derive asymptotic expressions
for the profile and gain when the coupling parameter
takes large and small values. We also use an energy
integral method to locate the nonreal eigenvalues. 1n
section 3 we compare the FEL interaction in the differ-
ent geometries and different regimes of operation. We
conclude in section 4 by discussing the validity of our
results.

2. The sheet beam FEL in the collective Raman regime

We analyze an FEL with a sheet electron beam,
which is infinitely wide in the x-direction, of width 2a
in the y-direction. and which propagates in the z-direc-
tion along a planar magnetic wiggler field of the form

By=¢ B, sin(k,z). (1)

Operation of an FEL which employs a sheet electron
beam has recently been reported [18]. The governing
equation was shown by us to be [13]

3%8E, N {¢2 ) ol B
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} 3E, =0, (2a)
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for | y| <1 and

VE,

ay

for | | > 1. The coupling parameter «f, in the Raman
regime and sheet electron beam is

a5h58k3,(wp/c)afvy5/za4, (3a)
or equivalently

2
o =/ = 4k IV 2aly ra’ 2, (3b)

where

2
[
J=2a| -2 |o.

is the normalized current. The normalized eigenvalue is
2 _HY¥ 2 - f) 4
¢ =220 k.- 2), ©)

and the normalized detuning (mismatch) parameter is
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Here w and k, are the wave frequency and wave
number, «, is the beam plasma frequency, y=(1 -
v2/¢*)71/% is the beam energy and v its velocity. In
writing the expression for af we assumed that k, =
w/c=2k,y?, that v,=c, and that a2 < 1. Also, the
beam is assumed to be cold. We allow a small trans-
verse density gradient

wh=whotwn(y), |yl<a, (6)
where
w1 () < wpo. (7

and wg=0, when |y| >a. In eq. (3a) w§= wéo- The
density variation is expressed through f(y), where
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The wiggler parameter a,, is eBW/(ﬁmczkw), where e
and m are the electron charge and mass. The normal-
ized coordinate is y = y/a. We apply an energy integral
method to locate the nonreal eigenvalues, similarly to
what we did in the analysis of the cylindrical beam [14].

We limit ourselves to symmetrical density profiles,
f(¥)=f(—y), and look for symmetrical solutions,
8E (y)=38FE,(~y). We therefore require

88E,(0) _

5 0, 9)

(¢,2-g) plane

Fig. 1. The domain in the complex ($*-{) plane where nonreal
eigenvalues are allowed.

and solve for y € [0, o0). When no waveguide is present,
the solution for y > 1 is

SE =b e Im¢>0. (10)

We multiply the equation by 8E* and integrate
from zero to infinity. Using egs. (9) and (10) we obtain

fld_’aSEx
0 ’ ay

2
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(11)

We first take the imaginary part of eq. (11). If Im(¢*) #
0, we get

R
1

fd?ISExlzfl—T&h_hz}=04 (12)
0 lo* =S¢ —f(7) ]

The term in the braces has to take both positive and

negative values. There must be y € [0, 1] where

R
%y (13)
lo?=¢=f(7)]°

The nonreal eigenvalues are allowed in the domain of
the stadium shape shown in fig. 1. Taking the real part
of eq. (11) and using the negativity of the first term, we
find that

458 { : afh[Re<¢2)—§~f<f>]}
fo” E P\ Rel#) + 6" =¢—/(3)1?

> 0. (14)

We multiply eq. (12) by Re(¢?) and subtract it from eq.
(14). We obtain

v o[ 2Re(¢%) = ¢ —f(7)
fody'SE"{ = —f(7)] }>0' ()
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Again, the term in the braces has to take a positive
value for some y. Therefore

(fmm )
HaaZo (16)

Re ¢ —
The shaded area in fig. 1 represents the domain in the
complex (¢*—¢{) plane, where both inequalities (13) and
(16) are satisfied, and where, therefore, nonreal eigen-
values are allowed. In order that nonreal eigenvalues be
allowed, the detuning parameter has to satisfy the in-
equality

¢ =2(a®)"" = 2o + foin: (17)

Having determined the domain in the complex plane
where nonreal eigenvalues are allowed, we turn now to
the gain and the transverse wave profile. The reduction
of gain due to density nonuniformities, especially for
the case of large f, has been analyzed by Fruchtman
and Weitzner [13]. In the following we assume that the
density is uniform,

wgl =0. (18)
Eq. (2a) takes the simpler form
d°8E "
f |6t 2 |BE, =0, (19)
0y’ (¢ =)

For notational convenience we denote af, as « in the
rest of this section. The analysis is equivalent to our
analysis of the sheet-beam FEL in the strong-pump
regime [12]. We first assume that a conductor is located
at y =1, and require that

SE. (1) =0. (20)

The solution of eq. (19), subject to the boundary condi-
tion (9), is thus

8E, =cos(xJ). (21)

where

L T — (22)
(¢ —%)

As a result of condition (20), we obtain

s [P 2
X =(5)(2n+1), n=0.1,2,.... (23)

For each « and { there is an infinite set of eigenvalues
which satisfy

(62 [ —(%)(2,1“)2 -0. (24)
If
[g (%) (2n+1) r<4a, (25)

the two roots of eq. (24) become nonreal. When

2
§=(g) n+1) (26)
the eigenvalue has its maximal imaginary part

Im ¢2 =a'/?, (27)

which is the same as in the 1-D case.
Let us assume now that » is large so that

(g)z(2n+l)2<<§,2a1/2. (28)

In that case, following (25), the instability vanishes. One
of the eigenvalues which corresponds to the eigenfunc-
tion

SE)(:cos[(g)(ZrH-])y] (29)
is

a

a=(3) @nv1)- (30)

T 2 2~

and is close to the vacuum solution. The second eigen-
value that corresponds to the eigenfunction (29) is

- 4) o

T 2 2 '
4(—) (2n+1)

2
Thus { is an accumulation point of real eigenvalues.
This is different from the case of the strong-pump
regime [12] where there was an accumulation point of
unstable modes.

We turn now to the case in which no waveguide is
present. The boundary conditions at y = 1 are now the
continuity of the wave and its derivative. The wave
fields (10) and (29) and their derivatives are equal at

Gra=§— (31)

y = 1. Thus, the dispersion relation is

x(eX—e X)

(eiX+e"X) - (32)

We look now for solutions of the dispersion relation for
large and for small values of the coupling parameter «.
When « is large, ¢ is expected to be larger than x, and
thus to lowest order

eiX e X =0, (33)
and

Xo = ﬂ_ﬂr;Ll) (34)
The eigenvalue is

¢p=ia'/?, (35)

as in the 1-D theory. The wave profile inside the beam
is the same as in the case of a guided wave. This is the
case of strong optical guiding. In order to obtain the
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form of the wave outside the electron beam we solve the
equations to the next order. The dispersion relation to
the next order yields

Xo = 190X, (36)
and
b= —2x, e (37)

Thus, for large a, the wave is

T 1+1 |_ _ )
8EX=2cos{(§)(2n+l)[l—ﬁ 1/4])}}, y<1;

exp{m/4+ (-1 H)T(y_ 1)}

y=1. (38)
In this case of strong optical guiding the wave is con-
fined to the electron beam and decays fast to zero at the
beam transverse edge.

When «a is small, the eigenvalue ¢ is expected to be
smaller than x2. To lowest order we have

(2n+1)m
e A

eX—e ' x=0, (39)
and also
2 «

X Ty (40)
Thus
Xo=nm, (41)
and

=¢+ nf‘ ;. (42)

where we assume that ¢ is much smaller than 1, and
that n is not zero. When x is smaller than 1, we obtain
from eq. (32) to lowest order, instead of eq. (41),

iX5= %o (43)
Together with eq. (40), this yields
¢(¢°—{) =ia. (44)
For { =0, the eigenvalue becomes
¢2 — ei'n'/3a2/3. (45)

Only the fundamental solution is unstable for small «,
and the growth rate scales as «*/? and not as «'/? (as it
does in the 1-D case). The reduction in the growth rate
originates from the reduction in the filling factor. In-
deed, when « is small, the solution exhibits a large
diffraction. Its form is

SE, =1+e" 522, y<1,
8E, = [1 _ (;L_—gl_‘/g)alm/z]

cewp| [ 1 5] (46)
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We now write the gain for large and for small values of
the coupling parameter in the original units

Wwik? 1/4
Im k, = —a,| ——
4y3c2
gk
=—aw(8 3W ) 5 a>1; (47a)
Y ca
4 2 27\1/3
agwsa
Im k,= — ka =
2 ye?
\/§ avaa 13
= — 7
> k., Ive La<]. (47b)

In the next section we compare the gain for the two
geometries and for the two regimes of operation.

3. Comparison of various gains

In a previous paper [12] we identified the coupling

parameter agy™ for a sheet beam FEL in the strong-

pump Compton regime

as™ =16k ( lE/cz)afvyﬂze’, (48a)
or equivalently

afy™ = 8kd (J/c)aiya® (48b)

The gain was shown to be asymptotically
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a<1. (49b)

where J = 2(wg/cz)u:a.

We note that the effect of diffraction on the gain is
different for the two regimes of operation. In both
regimes, when « is large, if the current J is kept
constant while a is reduced, the gain increases because
of the density increase, as it does in the 1-D case. When
a is small, however, this reduction of a is followed also
by a reduction of the filling factor, by diffraction losses,
and as a result, by a decrease in gain. The relative roles
of the density increase and filling factor decrease are

IV. LINEAR REGIME THEORY
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different for the two different regimes. In the Compton
regime these two opposing effects compensate each
other when a is small and the gain is independent of a.
In the Raman regime, the filling factor decrease is
dominant when « is small and the gain decreases when
a is reduced. Thus, the scaling of the gain with a is
nonmonotonic in the Raman regime. When « is large
and a is reduced the gain increases. If a is reduced
much further until a becomes small, the gain starts to
decrease. Therefore, in the Raman regime, for a given
current, there is an optimal thickness at which the gain
is maximal.

The geometry affects the scaling of the gain as well.
Moore studied the cylindrical beam FEL in the strong-
pump Compton regime [2]. When a helical wiggler of
the form

B, =B,[é, cos(k,z)+é, sin(k,z)], (50)
is employed, the coupling parameter is
alom = 32kd (wi/c?)aly’re, (51a)

or equivalently
oM =32k4 (1/nc)a’y’re, (51b)

c)l
where the wiggler parameter here a, is eB,, /(mc*k,).
I=(w}/c*)mric, and r, is the beam radius. These
expressions, aside from numerical factors, are identical
to those in eq. (48) for agy™. When « is large, the gain is
as in the 1-D case. The asymptotic expressions for the
gain are

Im k, = —8—[k (w2/e?)ay’]"”
1/3
k4l 2.3
= _BQ(LG_%Y_ , a>1, (52a)
'TTC"b

and
Im k,= kw(wg/cz)awyyzrb

1,2
X<_ln[ﬁkw(""P/C)]/za‘w/zy3/4rg/2]}
= —k,(1/mc)a,y*"?

1,2
{—ln[\/_k (1/'l'rc)l/4 VY ] } ,
a<1, (52b)
As pointed out by Moore [2], if ry is reduced while 7 is
kept constant, the gain keeps increasing, even though
the increase is very slow when « is small.
We studied the case of a cylindrical beam FEL in the
Raman regime [14]. The coupling parameter was shown
to be

cyl

or equivalently

R =4kl (1/mc) Paly®/ . (53b)

=4k3, (wp/c)aly>?re, (53a)

The asymptotic expressions for the gain were

[ k . au. k (wp/c)
mk.==>5" y32
1,2 71,2
a, | ky(1/mc)
=¥ a>1, (54a)
2 v,
Im k, = ——k (o p/c) ¥k
kz 1,2
-~ ('rrc) aly'?ry, a<1. (54b)

In the Raman regime in the cylindrical geometry, we
again find a nonmonotonic dependence of the gain on
the beam dimensions. For large «, the gain increases
when ry is reduced. while for small «, the gain de-
creases when ry is reduced. When « is small, the
diffraction losses are dominant in the Raman regime,
while the density increase is dominant in the Compton
regime.

4. Conclusions

In the previous sections we discussed the FEL inter-
action in two different geometries and two different
regimes of operation. The interaction was characterized
by the wiggler wavenumber k, and intensity a,, the
beam density wé and energy v, and the beam transverse
dimension (a or ry). For each case a different combina-
tion of those parameters gave a coupling parameter that
measures the strength of the interaction. We were able
to give analytic expressions for the gain in limiting
cases.

We emphasize that in practice one rarely encounters
a situation where the asymptotic expressions are real-
ized. The coupling parameter has to be very large or
very small in order for these expressions to be valid, and
in reality it is usually of order of one. If the coupling
parameter is very small, the exponential growth may be
too small to be measured. When the filling factor of the
FEL eigenmodes is very small and they extend to a
large distance transversely, elements of the experimental
setup will perturb the profile of the eigenmodes and not
allow them to evolve. Moreover, the two regimes of
operation, the Compton and the Raman regimes, are
not always distinct. Sometimes a system operates in an
intermediate regime. Important effects such as beam
emittance and thermal spread were not included in this
analysis.

Despite the limitations on the validity of these
asymptotic expressions, they are important since they
exhibit the interplay between various physical mecha-
nisms that are present in the FEL, as well as the relative
roles of the gain mechanism and diffraction loss in
various geometries and regimes of operation.
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